SSF: Shakti Standard Format Guide.
by

Akshar Bharati, Rgjeev Sangal, Dipti Misra Sharma

Report No: 111 T/TR/2009/85

e

Centre for Language Technologies Research Centre
International Institute of Information Technology
Hyderabad - 500 032, INDIA
May 2009

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

SSEF: Shakti Standard Format Guide

Akshar Bharati
Rajeev Sangal
Dipti M Sharma

Language Technologies Research Centre
International Institute of Information Technology
Hyderabad, India
{sangal,dipti}@iiit.ac.in
30 September 2007

Abstract

Shakti Standard Format (SSF) is a highly readable representation for storing
language analysis. It is designed to be used as a common format or common repre-
sentation on which all modules of a system operate. The representation is extensible
in which different modules add their analysis. SSF also permits partial analysis to
be represented and operated upon by different modules. This leads to graceful
degradation in case some modules fail to properly analyze a difficult sentence.

SSF also helps in debugging, and allows the modules to be located on different
machines, if necessary.

1 Introduction........... i 1
2 Text Level SSF......... 3
2.1 Background. i 3
2.2 Examples. ..o 3
2.3 Specifications..........oiiiiiiiiiiii 5
2.3.1 Text Level SSF Tags.................. 5
2.3.2 Header.........oiiiiiiiiiiiiiiiiL 6
2.3.3Body Tags.........coviiiiiiiiiiii... 6
2.3.4 Structure of Body.................... 6
3 Sentence Level SSF............ 8
3.1 Background............... 8
3.2 Specifications.......... 8
4 Cross Linking of Sentences.................... 12
4.1 Background.............oiiiiiiiiiiiii 12
4.2 Example. ... 12
References.......... i 13
Appendix A: Example Text in CML and SSF Formats.14
Appendix B:

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

1 Introduction

Shakti Standard Format (SSF) is a common representation for data on which all modules
of a system operate. This is specially designed to keep the system architecture extremely
simple.

SSF allows information in a sentence to be represented in the form of one or more trees
together with a set of attribute-value pairs with nodes of the trees. The attribute-value
pairs allow features or properties to be specified with every node. Relations of different
types across nodes can also be specified using an attribute-value like representation. The
representation is specially designed to allow different levels and kinds of linguistic analyses
to be stored. The developers use APIs to store or access information regarding structure
of trees and attribute value pairs.

If a module is successful in its task, it adds a new analysis using trees and attribute
values to the representation. Thus, even though the format is fixed, it is extensible in
terms of attributes or analyses. This approach allows ready made packages (such as,
POS tagger, chunker, and parser) to be incorporated easily using a wrapper (or a pair
of converters). In order to interface such pre-existing packages to the system, all that is
required is to convert from (input) SSF to the input format required by that package and,
the output of the package to SSF format. The rest of the modules of the system continue
to operate seamlessly.

The format allows both in-memory representation as well as stream (or text) rep-
resentation. They are inter-convertible using a reader (stream to memory) and printer
(memory to stream). The in-memory representation is good in speed of processing, while
the stream is good for portability, heterogenous machines, and flexibility, in general.

SSF promotes the dictum: “Simplify globally, and if unavoidable, complicate only
locally.” However, if the number of modules is large and each module does a small job,
the local complexity (of individual modules) remains under tight control for most of the
modules. At worst, the complexity is introduced only locally.

2 Text Level SSF

2.1 Background

A text or document has a sequence of sentences with some structure such as paragraphs
and headings. It also includes meta information related to title, author, publisher, year
and other information related to origin of the text or document. Usually, there is also
the information related to encoding, and version number of tagging scheme, etc. All this
information is coded in SSF.

The text level SSF has two parts, header and body:

<document docid="..." docnumber="...">
<header>

</header>

<body>

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

</body>
The header contains meta information about the title, author, publisher, etc. as contained
in the CML (corpus markup language) input. The body contains sentences, each in SSF.

2.2 Example for Text Level SSF

Here is an input example text with paragraphs and headings.

The Story of My Experiments with Truth
From Wikipedia, the free encyclopedia

Spiritual angle
In his own words Gandhi

The spiritual angle becomes

Here is the same text with meta tags in CML scheme. The initial set of tags encode the
meta tags, and the body contains the actual text. CML Document:

<document docid="gandhi-324" docnumber="2">

<title>The Story of My Experiments with Truth </title>
<author> ... </author>

<distributor>
http://en.wikipedia.org/wiki/The_Story_of_My_Experiments_with_Truth
</distributor>

<body>

<tb number="1" segment="yes" bullet="no">

<text> Spiritual angle </text>

<foreign language="select" writingsystem="LTR"> </foreign>
</tb>

<tb number="2" segment="no" bullet="no">
<text>
In his own words Gandhi
</text>
</tb>

<tb number="3" segment="no" bullet="no">
<text>

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

The spiritual angle becomes
</text>

</tb>
</body>

</document>

The above example is now shown represented in SSF with header and body. The header
has the meta-tags followed by body which contains the analysis of each of the sentences:

<document docid="gandhi-324" docnumber="2">

<header>

<title>The Story of My Experiments with Truth </title>
<author> ... </author>

<distributor>
http://en.wikipedia.org/wiki/The_Story_of_My_Experiments_with_Truth
</distributor>

</header>

<body>

<tb number="1" segment="yes" bullet="no"> <-- Note: Value of segment attribute
<sentence>

1 Spiritual

2 angle

</sentence>

</tb>

<tb number="2" segment="no" bullet="no">
<sentence number="1">

1 In

2 his

3 own

29 him

30 .

</sentence>

<sentence number="2">
1 Going

2 through

19 follow

20 .

</sentence>
</tb>

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

<tb number="3" segment="no" bullet="no">
</tb>

</body>

</document>

For full details of the above example, see Appendix A.

2.3 Specifications

The text level SSF has two major parts: header and body. The header has information
related to origin, creation, and distribution of the text. For example, information related
to title of source from which the text is taken, author name, creation date, publisher,
year of publication, data entry operator, name of checker, etc. Specific tags defined for
keeping each of these pieces of information are taken as they are from the corpus markup
scheme CML. Please consult the relevant document for details of the scheme.

The body contains the actual sentences along with paragraph structure etc.

2.3.1 Text Level SSF Tags
There are two tags at the outer most level: header and body.

<document docid="..." docnumber="...">
<header>

</header>

<body>

</body>
2.3.2 Header Tag

The beginning and end of the header is marked by:

<header>
and

</header>
respectively.

2.3.3 Body Tag
The beginning and the end of the body is marked by tags:
<body>

</body>

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

The body tag has several options which indicate the encoding, and version number of
sentence-level SSF. Here is an example,

<body encode="UTF-8" SSF-version="2.0">
</body>
Here are the details of the two options both of which are compulsory:

1. encode: Encode option indicates the encoding being used for the storing the token or
lexical item in the SSF (under property TKN_ to introduced later). Some example

values are: ISCII, UNICODE, UTF-8, wx, etc.

2. SSF-Version: SSF-version indicates the version being used. There are two existing
versions. New versions might also come out in the future, as the standard evolves.

2.3.4 Structure of Body
The body of a text in SSF contains text blocks given by the tag tb.

<body encode= ... >
<tb>

</tb>
<tb>

</tb>
</body>

A text block (tb) contains a sequence of sentences. The structure of a document in text
level SSF is indicated by Fig. 1.

doc

th-1 th-2 ... th-r

sent-1 sent—-m

Figure 1: Document Structure in SSF

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

Each sentence can be marked as a segment (to indicate a heading, a partial sentence,
etc.) or not (to indicate a normal sentence).

<body encode= ... >
<tb number=1>
<sentence segment="yes" number=1>
Spiritual angle
</sentence>
</tb>

<tb number=2>

<sentence segment='"no" number=1>
1 In

2 his

</sentence>

<sentence segment="no" number=2>
1 Going

2 through

</sentence>
</tb>

<tb number=3>

</tb>
</body>

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

3 Sentence Level SSF

3.1 Background

Sentence level SSF is used to store the analysis of a sentence. It occurs as part of text level
SSF. The analysis of a sentence may mark any or all of the following kinds of information
as appropriate: part of speech of the words in the sentence; morphological analysis of the
words including properties such as root, gender, number, person, tense, aspect, modality;
phrase-structure or dependency structure of the sentence; and properties of units such as
chunks, phrases, local word groups, bags, etc. Note that SSF is theory neutral and allows
both phrase structure as well as dependency structure to be coded, and even mixed in
well defined ways.

Several formalisms have been developed for such descriptions but the two main ones in
the field of NLP are Phrase Structure Grammar (PSG) and Dependency Grammar (DG).
In PSG, a set of phrase structure rules are given for the grammar of a language. It is
constituency based and order of elements are a part of the grammar, and the resulting tree.
DG, on the other hand, is relational and shows relations between words or elements of a
sentence. It, usually, tries to capture the syntactico-semantic relations of the elements in
a sentence. The resulting dependency tree is a tree with nodes and edges being labelled.
The difference in the two approaches are shown below with the help of the following
English example:

Example: Ram ate the banana. The phrase structure tree is drawn in Fig. 2 using a
set of phrase structure rules. Fig. 3 shows the dependency tree representation. SSF can
represent both the formats.

Ram ate the banar

Figure 2: Phrase structure tree

Though the SSF format is fixed, it is extensible to handle new features. It also has
a text representation, which makes it easy to read the output. The following example
illustrates the SSF. For example, the following English sentence,

Children are watching some programmes on television in the house. --(1)

contains the following chunks (enclosed by double brackets),

8

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

ate

Ram banan.

the

Figure 3: Dependency tree

((Children)) [[are watching]] ((some programmes))
((on television)) ((in the house))

All the chunks are noun phrases, except for one (‘are watching’) which is a verb group
and is shown enclosed in square brackets. If we mark the part-of-speech tag for each word,
we have the following:

((Children_NNS)) [[are_VBP watching VBGI]
((some_DT programmes_NNS)) ((on_IN television_NN))
((in_IN the_DT house_NN))

The representation above is shown in SSF in Fig. 5.

Address Token Category
1 (« NP
1.1 children NNS

))
2 ((VG
2.1 are VBP
2.2 watching VBG
))
3 q¢ NP
3.1 some DT
3.2 programmes NNS
))

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

4 ((PP
4.1 on IN
4.1.1 ((NP
4.1.2 television NN
))
))
5 (C PP
5.1 in IN
5.2 ((NP
5.2.1 the DT
5.2. house NN
))
))

Fig. 5: Towards Shakti Standard Format

As shown in Fig. 5, each line represents a word/token or a group (except for lines with
"))’ which only indicate the end of a group). For each group, the symbol used is ’((". Each
word or group has 3 parts. The first part stores the tree address of each word or group,
and is for human readability only. The word or group is in the second part, with part of
speech tag or group/phrase category in the third part.

The example below shows the SSF for the first noun phrase where feature information
is also shown, as the fourth part on each line.

1 ((NP <fs root=child cat=np gend=m num=p pers=3>
1.1 children NNS <fs root=child cat=n gend=m num=p pers=3 case=0>

))

Some frequently occurring attributes (such as root, cat, gend, etc.) may be abbreviated
using a special attribute called ’af” or abbreviated attributes, as follows:

1 (C NP
1.1 children NNS <fs af=’child,

—_————p

case
category | number
|

gender

The field for each attribute is at a fixed position, and a comma is used as a separater.
Thus, in case, no value is given for a particular attribute the field is left blank, e.g. last
two fields in the above example.

The representation in SSF of sentence 1 with feature structures is given in Fig. 5
(abbreviated attribute ’af’ is used).

10

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

Address Token Category Attribute-value pairs

1 ((NP

1.1 children NNS <fs af=child,n,m,p,3,0,,>
))

2 ((VG

2.1 are VBP <fs af=be,v,m,p,3,0,,>

2.2 watching VBG <fs af=’watch,v,m,s,3,0,,’ aspect=PROG>
)

3 ((NP

3.1 some DT <fs af=some,det,m,s,3,0,,>

3. programmes NNS <fs af=programme,n,m,p,3,0,,>
))

4 ((PP

4.1 on IN <fs af=omn,p,m,s,3,0,,>

4.1.1 ((NP

4.1.2 television NN <fs af=television,n,m,s,3,0,,>
))
)

5 ((PP

5.1 in IN <fs af=in,p,m,s,3,0,,>

5.2 ((NP

5.2.1 the DT <fs af=the,det,m,s,3,0,,>

5.2. house NN <fs af=house,n,m,s,3,0,,>
))
))

Fig. 5: Shakti Standard Format

3.2 Specifications

The SSF representation for a sentence consists of a sequence of trees. Each tree is made
up of one or more related nodes.

A node has properties which are given by prop-name and prop-val. For example, a
node may have a word “she’ associated with it along with gender 'f’. These may be stored
or accessed using prop-name TKN_, and gender attribute, respectively.

Every node has four ”system” properties:

e Address - referred to by property name ADDR_
e Token - acccessed by attribute name TKN_
e Category - accessed by attribute name CAT_

e Others - used to store user-defined features which are accessed through their feature
names or attribute names.

11

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

A property has a prop-name and prop-val. Here are a few examples for the system
properties:

Property FExample property val-
name ues

ADDR_ 1.24,3.2, 2

TKN_ "((°, she, eating

CAT_ NN, VB, NP, VG

Example: Given below are two nodes (or trees with a single node each), marked by
address labels 1 and 2, having their respective tokens as 'children’ and "played’, and their
categories as NN and VB:

ADDR_. TKN_ CAT_
1 children NN
2 played VB

Elements in each row are separated by a single tab character.

Corresponding to the above SSF text stream, an in-memory data structure may be
created using the APIs. (However, note that value of the property ADDR_ is not stored
in the in-memory data structure explicitly. It is for human reference and readability only,
and is computed when needed.)

Notation used for describing the values is given next. A value is given by any of the
following including their combination:

e Address. Consider the example,
<nnumber> (.<nnumber>) *
where < nnumber > is natural number (including zero) given by:

<nnumber> ::= <digit> <digit>x*
<digit> ::= 011]2]1314|516171819

and where "*’ indicates repetition zero or more times, '(’ and ’)” act as delimiters.

e Lexical value. Consider the example,
>((’ | <alpha-num-tok>

where either the two opening parentheses or < alpha — num — tok > is present.
< alpha — num — tok > is defined as follows:

<alpha-num-tok> ::= <alpha-num-u>* <alpha-num>
<alpha-num-u> <alpha-num>_

<alpha-num> (<alphabet>|<digit>) (<alphabet>|<digit>)*
<alphabet> AIBI ... IZlalbl ... |z

12

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

e Category names. For the property CAT_, the permissible values are given by a
dictionary of terms.

Property name Permitted Property values
CAT_ {NP,VG, ...} if CAT_ is a phrasal category
{NN,JJ, ...} if CAT_ is a part of speech category

The above can be written as:

Property name Property value format

CAT_ pcat (CAT_) -> {NP,VG, ...};
lcat (CAT_) -> {NN,JJ, ...}

where pcat is a procedure which gives the list of phrasal categories if value of CAT_is
a phrasal category, and [cat gives the list of lexical category if it is a lexical category.
3.2.1 Attributes and Values

A node may have one or more features. A feature consists of attribute-value pair.
Example: Two nodes with attributes 'root’:

ADDR_ TKN_ CAT_ OTHER_
1 children NN < fsroot = childnum = pl >
2 played VB < fsrool = playtense = past >

Note that the feature 'root” has values ’child’ and "play’ for the respective nodes. Similarly,
features mum’ (number) with value 'pl’ (plural), and ’tense’ with value 'past’ are also
shown.

To give the specification of the format of attributes and values, some definitions are
introduced first::

e Alpha-numeric $AN = [a-zA-ZO-9]+

'[a-z]” stands for a character out of the lower case range: 'a’ to 'z’. (In standard Unix
notation for regular expressions, square brackets indicate that any of the characters
is permitted, and the hyphen (’-’) shows the range. Thus, ’'a-z’ means any lower
case alphabetic character, etc. A '+’ indicates one or more repetitions, whereas "*’
means zero or more repetitions.)

e Alpha-numeric single-underscore:

Alpha-numeric strings possibly separated by single underscores (without two under-
scores in a sequence and not ending or beginning with an underscore)

$ANSU = $AN(_$AN)*

13

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

e Alpha-numeric double-underscore: Alpha numeric single underscore strings sepa-
rated by two possible double underscores

$ANDU = $ANSU(__$ANSU) *

Now,
(i) An attribute is defined by $ANSU or $ANSU followed by underscore.

<attribute> ::= $ANSU | $ANSU _
(ii) A walue is defined by SANDU (which includes $ANSU).
<value> ::= $ANDU

A simple value is defined by $ANSU.
Attributes

There are two types of attributes - user defined or system defined. The convention
that is used is that a user defined attribute should not have a underscore at the end.
System attribute may have a single underscore at its end.

Values

Values are of two types: simple and structured. Simple values are represented by
$ANSU. Structured values have progressively more refined values separated by double
underscores. For example, if a value is:

vmod__varg__k1

it shows the value as 'vimod’ (modifier of a verb), which is further refined as 'varg’ (argu-
ment of the verb) of type 'k1’ (karta karaka).

A value X covers another value Y, if Y is structured and more refined than X. In other
words, Y is of type X, and is more specified, or refined than X.

For example, a value B covers value C in the following:

B
C

vmod__varg

vmod__varg__kl

B says that something is an argument of a verb (vmod__varg), and C says that it is an
argument of type k1. This indicates that C is a refined or detailed form of B.

If a constraint says that the value must be of type X, then Y also satisfies the constraint.
For example, if value B is constrained to be of type 'vmod__varg’ then clearly both B and
C satisfy the constraint. Thus, value X is covered by a value Y if the following holds:

case (i): X =Y

case (ii): X is a prefix of Y, followed by two underscores and $ANDU.

14

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

3.2.2 Interlinking of nodes

Nodes might be interlinked with each other through directed edges. Usually, these edges
have nothing to do with phrase structure tree, and are concerned with dependency struc-
ture, thematic structure, etc. These are specified using the attribute value syntax, how-
ever, they do not specify a property for a node, rather a relation between two nodes.

For example, if a node is karta karaka of another node named ’'play1’ in the dependency
structure (in other words, if there is a directed edge from the latter to the former) it can
be represented as follows:

1 children NN < fsdrel =" k1 : playl’ >
2 played VB < fs name = playl >

The above says that there is an edge labelled with k1’ from ’played’ to ’children’ in the
"drel’ tree (dependency relation tree). The node with token 'played’ is named as 'playl’
using a special attribute called 'name’.

So the syntax is as follows: if you associate an arc with a node C as follows:

<treename>=<edgelabel>:<nodename>

it means that there is an edge from < nodename > to C, and the edge is labelled with
< edgelabel >. Name of a node may be declared with the attribute 'name’:

name=<nodename>

(All the words in angle-brackets may be substituted with appropriate user-defined names.)

15

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

4 Cross Linking across Sentences

4.1 Background

There is a need to relate elements across sentences. A well known case is that of co-
reference of pronouns. For example, in the following sentences:

Sita saw Ram in the house. He had come all by himself.

the pronoun "he’ in the second sentence refers to the same person as referred to by 'Ram’.
Similarly "himself” refers to same person as 'he’ refers to. This is show by means of a
coreference link from ’he’ to 'Ram’, and from "himself’ to 'he’. SSF allows such cross-
links to be marked.

The above text of two sentences is shown in SSF below.

<document docid="gandhi-324" docnumber="2">
<header> ... </header>
<body>
<tb>
<sentence num=1>
Sita <fs name=R>
saw
Ram
in
the
house

~N O O WwN -

</sentence>

<sentence num=2>

He <fs co
had

come

all

by

himself <fs coref=he>

f="..%R" name=he>

H
(0]
h

~N O O WwN -

</sentence>
</tb>

Note that 'himself’ in sentence 2 corefers to 'he’ in the same sentence. This is shown using
attribute 'coref’ and value 'he’. To show coreference across sentences, a notation is used
with "%’. It is explained next.

Name labels are defined at the level of a sentence: Scope of any name label is a sentence.
It should be unique within a sentence, and can be referred to within the sentence by using
it directly.

To refer to a name label in another sentence in the same text block (paragraph), path
has to be specified:

16

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

..\7R
To refer to a name label R in a sentence in another text block numbered 3, refer to it as:
B VAR VAAVARVA

One can refer to a registered corpus C using * C’. This will be expanded in time to come.)

5 References

Bharati, Akshar, Rajeev Sangal, Dipti M Sharma, Shakti Natural Language Analyzer:
SSF Representation Unpublished manuscript, LTRC, IIIT Hyderabad. (Available on
http://ltre.iiit.ac.in/ILMT)

(Contains a longer description with many examples, but also with the choice of depen-
dency structures and how SSF helps in system building is available.)

17

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

A Example: Text in CML and SSF formats

Here is an input example text with paragraphs and headings.

The Story of My Experiments with Truth
From Wikipedia, the free encyclopedia

Spiritual angle

In his own words Gandhi takes us through some of the experiences in his
life, with each chapter forming at least one important learning lesson to
him. Going through the introduction section of the autobiography may
suggest what to expect during the five parts that follow.

The spiritual angle becomes evident when Gandhi says, "...What I want to
achieve - What I have been striving and pining to achieve these thirty
years - is self-realization, to see God face to face, to attain Moksha
(Salvation). I live and move and have my being in pursuit of this goal."

Here is the same text with meta tags in CML scheme. The initial set of tags encode the
meta tags, and the body contains the actual text. CML Document:

<document docid="gandhi-324" docnumber="2">

<title>The Story of My Experiments with Truth </title>
<author>

<firstname>Mohandas</firstname>
<middlename>Karamchand</middlename>
<lastname>Gandhi</lastname>

</author>

<creation creationdate="03/07/2007" institutename="IIIT, Hyderabad"></creation>
<distributor>
http://en.wikipedia.org/wiki/The_Story_of_My_Experiments_with_Truth
</distributor>

<language name="En" writingsystem="LTR" script="Roman" />
<projectdesc name="ILMTConsortium"/>
<dateofpublication>1927</dateofpublication>

<body>

<tb number="1" segment="yes" bullet="no">

<text> Spiritual angle </text>
<foreign language="select" writingsystem="LTR"> </foreign>

18

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

</tb>

<tb number="2" segment="no" bullet="no">
<text>
In his own words Gandhi takes us through some of the experiences in his
life, with each chapter forming at least one important learning lesson
to him. Going through the introduction section of the autobiography
may suggest what to expect during the five parts that follow.
</text>
<foreign language="select" writingsystem="LTR"> </foreign>

</tb>

<tb number="3" segment="no" bullet="no">
<text>
The spiritual angle becomes evident when Gandhi says, "...What I
want to achieve - What I have been striving and pining to achieve
these thirty years - is self-realization, to see God face to face,
to attain Moksha (Salvation). I live and move and have my being in
pursuit of this goal."
</text>
<foreign language="select" writingsystem="LTR"> </foreign>

</tb>
</body>

</document>

The above example is now shown represented in SSF with header and body. The header
has the meta-tags followed by body which contains the analysis of each of the sentences:

<document docid="gandhi-324" docnumber="2">

<header>

<title>The Story of My Experiments with Truth </title>
<author>

<firstname> Mohandas </firstname>

<middlename> Karamchand </middlename>

<lastname> Gandhi </lastname>

</author>

<language name="En" writingsystem="LTR" script="Roman"/>
<projectdesc name="ILMTConsortium"/>
<dateofpublication>1927</dateofpublication>

</header>

<body>

<tb number="1" segment="yes" bullet="no"> <-- Note: Value of segment attribute
<sentence>

19

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

1 Spiritual
2 angle
</sentence>
</tb>

<tb number="2" segment="no" bullet="no">
<sentence number="1">
1 In

2 his

3 own

29 him

30 .

</sentence>

<sentence number="2">
1 Going

2 through

19 follow

20 .

</sentence>
</tb>

<tb number="3" segment="no" bullet="no">
</tb>
</body>

</document>

20

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

Appendix - B

B Dictionary of SSF Attributes and Values

B.1 Node Types

Node types can be represented in the feature structure by the attribute 'ntype’. The
values for the ntype attribute would be any one of the following : pos, lwg, bag, phr

B.1.1 pos

: When the node has a part of speech as its category. Following Telugu example depicts
it -

((PRP <ntype=pos>
baMgArapu NN
avi PRP

))

B.1.2 lIwg

: a word group. For example,

((NP <ntype=lwg>
rAma
ko

))

B.1.3 bag

. a group of words where internal dependencies are not known or are not marked. For
example,

((NP <ntype=bag>
My

younger

brother

Ram

)

The expanded dependency tree for the above 'bag’ is given in Figure-4

21

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

Ram

brother
my younge
Figure 4:

B.1.4 phr

The value 'phr’ would be assigned to a phrasal node within a phrase structure paradigm.
For example,

((PP <ntype=phr>
to

((NP <ntype=phr>
My

younger

brother

Ram

)

)

Although, the NP in the above example appears to be the same as the NP in the
previous example (B.1.3), the grammatical framework in which it is analyzed here is
different. B.1.3 is within dependency framework and B.1.4 is in the phrase structure
grammar framework. The expanded phrasal tree structure for the above example is
represented in Figure-5.

B.2 Predicate for Dependency relation type

(Note : This predicate will not be used in the ILMT system as of now)

The predicate for dependency relations is 'drel’. The top level values for this attribute
are - nmod, vmod, jjmod, and rbmod. Each of these values may have subtypes, particu-
larly, vimod and nmod. Figure-6 and Figure-7 represent the subtypes for nmod and vmod
respectively.

The leaf nodes in the Figures 6 and 7 are the final values for the attribute ’drel’. In
case the system fails to get the final value for a given node, the value of the parent node
is given. For example, if the deeper level value of the drel attribute is not known for a
node, a higher level value can be given. This point is further explained through Figures
8 and 9 below.

22

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

N

PP
N

P NP
to P N
Det NP Ram
my Adj N
younger brothe
Figure 5:
nmod
\
relc r6 adj
Figure 6:
1. ((NP <fs drel=vmod__varg__kl:watching>
1.1 Children
1.2)
2 ((VG <fs name=watching>
2.1 are
2.2 watching
))
3. ((NP <fs drel=vmod__varg__k2:watching>
3.1 some
3.2 program
)
4 ((PP <fs drel=vmod__varg__k7p:watching>
4.1 on
4.2 television
)
5. ((PP <fs drel=vmod__varg__k7p:watching>
5.1 at
5.2 home
))
Figure 8

23

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

vmod

varg adj
m y / \
ﬂ\ rh rr adv
k3 k5 k7 etc.
Figure 7:

Figure-8 shows the fine-grained values of the drel attribute for the NPs and PPs. The
NPs ’children” and ’some program’ have the kakrak values k1’ and 'k2’. Both the PPs
‘on television” and ’at home’ have k7p as their karaka values since both indicate 'place’.
However, Figure-9 represents the drel values for both the PPs as 'ky’. This indicates that
the more fine grained drel values for these PPs could not be obtained.

(C NP <fs drel=vmod__varg__kl:watching>
.1 Children

2))

((VG <fs name=watching>

.1 are

.2 watching

)

(C NP <fs drel=vmod__varg__k2:watching>
.1 some

.2 program

)

(C PP <fs drel=vmod__varg__ky:watching>
.1 on

.2 television

)

(C PP <fs drel=vmod__varg__ky:watching>
.1 at

.2 home

)

~ 0L OO~ DD DWW W~NDNNDNNRE - -

Figure 9

The value ’ky’ indicates that the PPs are kakakas other than k1, k2 and k4. Similarly,
if it is known for a node that it is a 'varg’ but not exactly which varg, the value can be
given as varg and so on.

Although the drel values given in Figures-5 and 6 represent the tree structure, to save
typing effort, one can give only the final known value. For example, one can only give the
drel value as drel=k1. All the values for the attribute ’drel’ are given in Table 1 at the
end of this document.

24

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

B.3 Predicate for Grammatical Role Type

(Note : This is not being used in the ILMT System as of now)

The attribute for the grammatical role type is 'grole’ The values for this attribute are
fixed depending on the syntactic properties of a language. For example for English these
values would be : Subject, Object, Object2, prep__on, prep__in (etc), comp__that etc. The
double underscore in any value indicates a subtype. For example, the value 'prep__on’
states 'preposition of the type on’ .

B.4 Some other Predicates

(Note : This is not being used in the ILMT System as of now) Certain other attributes
which can occur in SSF are : Sentence Type as stype, theta roles as trel, named entities
as nlp_sem, sense as SID, class as CLID, Coreference as coref,

25

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

Appendix - C

C Dictionary of Categories

C.1 Predicates and POS Categories
Predicate is a program that returns true if the listed category is given as argument.

Type Phrases/bags Lexical Head

nounp NP NN,NNP,NST,PRP,WQ
vrbp VGF, VGNF,VM
VGINF, VGNN
adjp JJP JJ,QF
advp RBP RB,QF,WQ
conjp CCP CC
negp NEGP NEG
fragp FRAGP VAUX,PSP,DEM
NILp BLK SYM, INJ,UNK

Predicates for the following will be decided in due course:

QC, QO, RpP, CL, INTF, ECH, XC, RDP, UT

26

http://www.docudesk.com/deskpdf/pdf-studio/buy-studio-x-now

